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1. Introduction

Due to the increasing quality requirements of regulatory
agencies, the high cost of reagents and the large quantity of
variables affecting the analytical process, the procedure of devel-
opment and validation of analytical methods cannot be considered
as a simple task. In this context, the term “optimization” seems to
refer to improving the performance of the analytical process, i.e.
discovering the conditions at which the best response is obtained
[1]. In analytical chemistry, optimization is a critical stage to find
the value that each factor must have to produce the best possible
response. It must be done assuring a good performance in the
analytical methods which are being developed in the laboratory,
modified from official or standard methods or obtained from the
scientific literature.

In this context, the multivariate design of experiments (DOE) is
an important issue because it takes less time, effort and resources
than the univariate procedures (which are surprisingly still being
used in routine method development), and facilitates the gather-
ing of large quantities of information while minimizing the
number of experiments [2]. DOE and the response surface meth-
odology (RSM) have been proved to be useful for developing,
improving and optimizing processes [3]. The RSM has been
extensively used in analytical applications [4–7], industrial world
[8–12] and in bioprocesses [13–16].

As it can be appreciated in the flow chart presented in Fig. 1,
DOE and RSM are mostly applied to analytical separations and
extraction procedures. After a first screening study, a response
surface design is built which provides data that must be generally
modeled through the least squares fitting or, exceptionally, by
artificial neural networks. When a large number of responses
should be optimized (following the appropriate criteria), the
desirability function is the most popular tool to be applied [17].

In this review, the role of the DOE in the analytical method
optimization stage will be analyzed. Several critical issues will be
discussed, especially those which have not been addressed exten-
sively in previous reviews, such as response transformation and
multiple response optimization. Finally, some analytical applica-
tions are presented in the context of analytical methods develop-
ment, particularly in multiple response optimization procedures
using the desirability function.

2. Aim and methodology of experimental design

A major role of experimental design in analytical chemistry
concerns method optimizations, where the main purpose is to
discover the experimental conditions which produce the best
possible analytical performance [1]. Two stages may be considered
in method optimization: (a) a screening step, where many factors
are studied to identify those with the significant effects on critical
variables, and (b) the optimization, where the factors are further
examined in order to determine the best analytical conditions. In

addition, experimental design is also used in analytical chemistry
to evaluate robustness in method validation (to examine the
effects that small changes in the analytical method conditions
have on the responses) and to build calibration and validation sets
to be used for calibration purposes [18].

Two optimization strategies can be distinguished: the univari-
ate and the multivariate approaches. In the first, only one factor is

Fig. 1. Flow chart which shows schematically how DOE and RSM are applied in
analytical method developments.
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varied at a time (OVAT), while the other factors remain constant.
This classically applied procedure does not take into account
interactions between factors. Moreover, the number of experi-
ments is important when the number of factors increases, and
usually the experimental domain explored is smaller compared to
that examined with the multivariate approach.

On the other hand, in the multivariate strategy, several factors
are simultaneously studied in a predefined number of experi-
ments, varying together the levels of all the factors involved in the
process. The multivariate procedure has the following advantages
in relation to the univariate strategy, which were discussed in the
excellent tutorial written by Leardi [19]:

(a) It is possible to know thoroughly the studied system, having a
global knowledge of it in the whole experimental domain.
From the results obtained, a mathematical model can be
constructed to relate the response to the experimental condi-
tions. The response for any point of the experimental domain
can be predicted after an estimation of the coefficients of
the model.

(b) The number of experiments is smaller than the number of
experiments required in the OVAT approach, reducing cost,
effort and time.

(c) It is possible to study the interactions between factors and the
non-linear relations with the responses.

(d) Generally, it is possible to find the absolute optimum in the
studied domain, while the OVAT approach can find local
maximum which depends on the initial conditions of the
analysis.

(e) The quality of the information gathered in every experimental
point can be known through the leverage.

In order to perform a correct experimental design, most of the
authors recommend considering the following steps [3,20]:

2.1. Approach to the problem

It is necessary to have a clear idea about the issue in hand and
about the optimization objectives. The experimental design is a tool
which allows finding solutions to properly defined analytical problems.

The objective of the study should be clearly identified and specified, as
well as time and cost of experimentation must be evaluated.

2.2. Selection of the response variables

A variable which can provide the necessary information in the
evaluation of the analytical performance of the method must be
selected to be subjected to the optimization procedure. This variable is
called response and, according to the objective, it may be necessary to
observe more than one response. Many variables may be selected as
response for example, analyte recovery (accuracy), pre-concentration
factor, peak area (sensibility), peak tailing, chromatographic resolution
(selectivity), relative standard deviation (precision), migration or
retention time (efficiency), etc.

2.3. Selection of factors and their levels

All the factors that may affect the process must be carefully
detected and examined. The experimental domain must be
defined for each factor and also a way of control and measurement
must be established. The factors can be divided into quantitative,
qualitative and mixture-related (e.g. volume of solvents).

Since the number of factors to be considered can be important,
it is necessary to perform screening experiments to determine the
experimental variables and interactions that have a significant
influence on one or several responses.

In screening designs, the factors are usually examined at two levels
(–1, þ1). The range between the levels is the broadest interval in
which the factor can be varied for the system under study and is
chosen on the basis of the literature information or earlier knowledge.

2.4. Selection of an experimental design

Attention should be paid to the issues to be considered for the
selection of the best experimental design for each stage. They are
(a) stated objective: type of problem and known information;
(b) number of factors and interactions to be studied; (c) statistical
validity and effectiveness of each design; (d) operating, cost and
time restrictions; and (e) easiness of understanding and imple-
mentation complexity of each design.

Table 1
Designs employed for the screening stage.

Design Factors Resa Number of experiments Estimated Effects Ob Rc

Type Number

Two-level full
factorial (2-FFD)

Numerical 2rkr5 – 2k 2k–1 Yes Yes
Categorical 2kþ1 (considering

replicates)
Main effects, interactions (two-way, three-way and k
factors)

Two-level fractional
factorial

Numerical
Categorical

44 III or4 2k�p R¼ III (main effects confounded with two-factors
interactions),
R¼ IV (main effects confounded with three-factors
interactions
and two-factors interactions confounded with two-factors
interactions),
R¼V (main effects confounded with four-factors
interactions and
two-factors interactions confounded with three-factors
interactions)

Yes Yes

Plackett–Burman (P–B) Numerical
Categorical

N–1 III N (multiple of 4) Main effects confounded with (fractions) of the two
and higher order interactions.

Yes Yes

k¼number of factors; p¼number of independent generators.
a Res: resolution.
b O: orthogonality.
c R: rotability.
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2.5. Execution of the experiments and determination
of the responses

In this step, it is recommended to take into account the following
considerations: (a) the observations and the errors should be inde-
pendent random variables; (b) when the number of experiments
exceeds the amount that can be done in one day or in a work
sequence, the experiments should be performed in blocks (each block
corresponds to a different day or work sequence, and it is necessary to
take into account the blocking effect); (c) in a first instance it is
necessary to apply computations to estimate the factor effects on a
response. An estimate is always subject to error, and in order to decide
whether or not the effect is significant, the standard deviation of the
effect should be known.

This standard deviation is also called standard error on an
effect and it can be computed from the standard deviation of an
experimental measurement (experimental error, random error,
and experimental uncertainty).

Random error is due to common causes of the process and
represents the observed variability of the response that cannot be
explained through the factors under study. This error may include
the effect of the non-studied factors and operator errors made
during the execution of the experiments. If the variability due to
the two latter cases is important, it is not possible to distinguish
what is the true effect that the studied factor exerts on the
response. For this reason, it is important that the operator errors
remain small or negligible, and to avoid freely variations of any
factor with a significant influence on the response.

In some situations the random error is determined as analytical
procedure precision. If, on the contrary, it is not previously
known, there are different ways to estimate it. A first approach is
to replicate the central and/or other points of the design, and
estimate the variance. In this case, it is required that replicates be
measured under intermediate precision conditions. Measurements
under repeatability conditions lead to underestimate the experimen-
tal error and then too many effects could be erroneously regarded as
significant.

A second approach is that the experimental error can also be
estimated from ‘a priori’ declared negligible effects, e.g. effects of
dummies factors and factor-interactions. The dummies factors are
imaginary variables for which the change from one level to the
other does not represent a physical change. The effects observed
for the dummies and for three- or higher-factor interactions are
often considered to be due to random errors.

In a third approach, the experimental error is derived from ‘a
posteriori’ declared negligible effect, e.g. using the algorithms of
Dong or Lenth, which are based on the distribution of the non-
significant effects [21].

3. Designs

3.1. Screening designs

Full factorial, fractional factorial and Plackett–Burman designs,
all of them at two levels for each factor (k), are the most widely
used in the step of selection of factors because they are economic
and efficient. The principal features are presented in Table 1.

As the factorial fractional design is one of the most used for
screening purposes, a brief description of this kind of design will be
presented next. This design enables the evaluation of a relatively
large number of factors in a small number of experiments by
fractioning a full factorial 2k design in a 2k�pdesign, where p
represents the number of independent design generators, chosen
to fractionate the design. Different fractional designs can be created
for a large number of factors. For example, when examining six
factors, a half-fraction factorial design with 26�1¼32 experiments,
a quarter-fraction factorial design with 26�2¼16 experiments or an
eighth-fraction factorial design requiring only 26�3¼8 experiments,
are all possible. However, fractional designs do not enable the
estimation of all major and interaction effects separately because
some of them are estimated together, i.e. they are confounded
(Table 1).

3.2. Optimization designs

They allow modeling a second order response surface (see
below). The most widely used designs in this step are full factorial

Table 2
Response-surface designs most commonly used for optimization step.

Design Type of
factors

Factor levels Number of experiments Orthogonality Rotability

Central composite (CCD) Numerical 5 2kþ2kþCp Yes–Nob Yes–Noa

Categorical
Box–Behnken (BBD) Numerical 3 2k(k–1)þCp Yes Yes

Categorical
Full factorial design at three levels
(3-FFD)

Numerical
Categorical

3 3k Completely
orthogonal

No

Doehlert Matrix (DMD) Numerical Different for each factor k2þkþCp No No
Categorical

D-Optimal Numerical
Categorical

Different for each model. Irregular experimental
domains

Selected subset of all possible
combinations

No Yes

a May be rotatable if α¼(f)1/4, being α the star point distance and f the number of factorial point.
b May be orthogonal if CpEa√fþ4–f, being Cp the number of center points, k¼number of factors.

Fig. 2. (A) Three-dimensional representation of a spherical “near- rotatable”
central composite design for optimization. Three factors (a, b and c) are assessed
each at five levels. The green dots represent the factorial points (Fp), red dots the
star points (Sp) and the blue dot the center point (Cp). (B) In a plain projection, the
design allocates the points in a circumference of radius α equal to 1.682. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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at three levels, central composite, Box–Behnken, D-optimal and
Doehlert designs, whose main features are presented in Table 2.
All these optimization designs allow to obtain experimental data
which are then fitted in a polynomial model of multiple linear
regression with the purpose of characterizing a response surface
[22,23].

The well-known central composite design will be described as
follows: two-level (–1 and þ1) factorial design points (Fp), axial or
“star” points (Sp) and center points (Cp) with all factors set to 0. Al
factors in Sp are set to 0, except one factor with the value 7α. The
α value determines the location of the Sp in the design and usually
varies from 1 to √k.The former allocates the axial points in the
face of the cube or hypercube and is known as “face-centered
central composite design”. The latter results in experimental
points placed in the domain of a (hyper)cube. Rotatable designs
will be achieved with α¼(f)1/4,where f is the number of Fp. This is
an interesting property, since the experimenter does not know at
the outset where the desirable response may lie within the design
space. Rotatability ensures a reasonably stable distribution of the
prediction variance in all the design space. However, for k43
rotatable designs require a large α value, which is not always
practical from an operational point of view. In such cases, a
spherical design, which results “near-rotatable” is preferable to
stabilize the variance in a narrower and acceptable experimental
region. In Fig. 2 the experimental points of a spherical central
composite design with three factors (a, b and c) are represented. At
least fifteen experiments are required in this case in order to
construct the mathematical model with an efficient estimation of
the quadratic terms.

When the analyzed factors are the components of a mixture, their
levels are not independent from one another. In this situation, it is
necessary to use a mixture design i.e. a response surface design which
allows to study the effect of the variation of the ratios among the
variables. In this design, the domain is a regular figure having as many
vertices as components, in a space with dimensionality equal to the
number of components minus one [19].

The graphical representation corresponding to a mixture design
of three components is an equilateral triangle whose vertices
correspond to combinations containing 100 percent of a single
component. Each of the three sides represents a mixture that does
not have one of the three components (binary mixtures). Besides,
the internal points correspond to the ternary mixtures. To examine
the effects of mixture components on the response variable,
simplex designs are used, and simplex lattice or simplex centroid
design can be selected among them. A simplex centroid design for
the three components is shown in Fig. 3. These designs are usually
augmented with additional points in the interior of the experi-
mental region. The models used in mixture designs differ from the
polynomials used in response surface for independent variables
(see below). They are the well-known Scheffé polynomials, which
can be linear, quadratic, full cubic and special cubic [22].

4. Modeling

4.1. Model building for screening

The general approach to the statistical analysis of screening
design for every response being analyzed includes (1) estimating
factor effects and examining their signs and magnitudes, (2) build-
ing an initial model for the response [see Eq. (1)], (3) performing
statistical tests, (4) refining the model removing any non-
significant variable from the initial model, and (5) analyzing
residuals in order to check model adequacy and assumptions [22].

The effect of each factor on each response is estimated as the
difference between the average response of the experiments with

positive signs and the average response of the experiments with
negative signs (in a codified design, see above). An alternative to
determine the factor effect is estimating the coefficients of the
model. The observations or responses (y) in factorial screening
experiments can be described by a linear statistical model:

y¼ β0þ ∑
k

i ¼ 1
βixiþ ∑

k

1r ir j
βijxixjþε ð1Þ

where β0 is the overall mean effect, βI represents the effect of the
factor xi, βij is the effect of the ij interaction between the factors xi
and xj, and ε is a random error component. This latter term
represents other sources of variability not accounted for in the
model. Thus, ε includes effects such as measurement error on the
response, other source of variation that are inherent in the system
like instrumental background noise, the effects of non-studied
variables, and so. ε is considered a statistical error, assuming it to
have a normal distribution with mean zero and variance s2, which
can be estimated by performing replicated experiments [3].

One of the most popular ways to assess the significance of the
effects and to decide which of them should be considered in the
final model and which ones should be included into the error is by
using normal and half-normal probability plots. The effects that
are negligible are normally distributed, with mean zero and
variance s2 and will tend to fall along a straight line on these
plots. On the other hand, significant effects will have non-zero
means and will not lie along the straight line. The apparently
negligible effects are combined as an estimate of error and
significant effects should be considered in the model. In addition,
the selected variables from any graph analysis should be examined
by analysis of variance (ANOVA) and, if necessary, the model
should be reduced by removing any non-significant variables from
the initial model [22].

Analysis of variance (ANOVA) is a collection of statistical
models used to analyze the differences between group means
and their associated procedures, such as “variation” among and
between groups. According to Eq. 1, the appropriate hypotheses
for model evaluation are

H0 : βi ¼ βij ¼…¼ βk ¼ 0 ð2Þ
H1:βka0 for at least one k

Rejection of H0 in Eq. (2) implies that at least one of the
regressor variables xi, xj, …,xk contributes significantly to
the model.

ANOVA estimates three sample variances: a total variance
based on all the observation deviations from the grand mean, an
error variance based on all the observation deviations from their
appropriate treatment means and a treatment variance. The test
procedure involves partitioning the total sum of squares (SST) into

Fig. 3. Schematic representation of a mixture simplex centroid design for three
components.
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a sum of squares due to the model (SSR) and a sum of squares due
to residual or error (SSE).

To determinate the statistical significance of the model, the
F-test is used. If the statistic F0 exceeds Fα,k,n�k�1 the H0 is rejected
and there is at least one variable that contributes significantly to
the model.

Finally, the analyst should select all factors that significantly
affect each response. When the number of factors is too large, the
analyst should resort to experience and knowledge to choose each
factor properly and judge its effects. An example of how the
analyst must make decisions in such cases can be seen in the
development of a method for analyzing sulfur compounds in the
aroma of white wines, using ultrasound assisted-emulsification-
dispersive liquid-liquid microextraction coupled with gas
chromatography-mass spectrometry detection [24]. In this work,
six factors were studied and, owing to interactions between them
when different responses were analyzed, only one of them could
be maintained at a fixed value while the others had to be
considered in the next optimization procedure.

4.2. Model building for RSM

Once the data corresponding to the responses evaluated in the
optimization stage have been collected, a mathematical model can
be built for each response fitting a second order polynomial
function. The general equation used for this purpose is the
following:

y¼ β0þ ∑
k

i ¼ 1
βixiþ ∑

k

i ¼ 1
βiixi

2þ ∑
k

1r ir j
βijxixjþε ð3Þ

where y, xi and xj are the same than for Eq. (1), β0 is the constant
term or intercept, βi, βii and βij represent the coefficients of the first
order, quadratic and interaction terms, respectively, and ε is the
residual associated with the experiments. Generally, only second-
order interactions are taken into account because higher order
interactions are not significant and may be confused with the main
effects.

The model equation is usually fitted by the least square (LS)
methodology, a multiple regression technique that fits a model to
set the experimental data finding coefficients values that minimize

the residual term ε. Artificial neural networks (ANN) represent
another intelligent tool for the non-linear multivariate modeling
[25]. In every case, the fitted model must be able to properly
describe the data performance in order to make statistical predic-
tions. In the case in which only two factors are optimized, RSM
generates a graphical view of the system, since the response can
be represented as a solid surface in a three-dimensional space.
When more than two factors are being optimized, the graphical
representation is made for two of them, maintaining the other
ones at constant values; thus, a small fraction of the surface is
shown. Besides, contour maps may be plotted as another way of
visualization. This contour plot consists of lines of constant
response, corresponding to a specific height of the response
surface.

4.2.1. Evaluation of the model
When applying LS regression, it is customary to assume that

the expected values of the errors are near zero, independent of
constant variance and, at least, approximately normally distribu-
ted. However, the response is always measured with certain error;
therefore, both the parameter estimates β̂ and the predicted
response ŷ ðxÞ will have random variations depending on the
choice of experiments. That is why these assumptions should be
checked [23].

To determine if the multiple regression fit is significant for the
second order model, a test of analysis of ANOVA to show that H1

hypothesis is valid (H0 : βi ¼ βii ¼ βij::::::::::βk ¼ 0;H1 : βia0) should
be applied. The model is considered satisfactory when the regres-
sion is significant and a non-significant lack of fit is obtained for
the selected confidence level.

However, obtaining a significant model does not necessarily
mean that it explains correctly the variation in the data. Conse-
quently, it is necessary to evaluate residual plots, the coefficient of
determination (R2) and the adjusted coefficient of determination
(R2adj), representing the percentage of variance explained by the
model. Table 3 shows a breakdown of the model diagnostic plots,
which are useful to check residual distribution and outlier detec-
tion. The normal probability plot indicates whether the residuals
follow a normal distribution, one of the basic conditions for the
validity of ANOVA. The homogeneity of the variance (other

Table 3
Model diagnostic plots.

Plot Evaluation Expected response Inadequate result

Unexpected
response

Suggested action

Normal probability Normal distribution of residual Straight line “S-shaped” curve Response transformation
Residuals vs. Predicted Constant variance in range Random scatter Expanding

variance
Response transformation

Residuals vs. Run
order

Variables that may have influenced the response
during the experiment

Random scatter Trends Randomization and blocking of experiments

Residuals vs. Factor Variance not accounted by the model depending
of different levels of a factor

Random scatter Pronounced
curvature

New regression model

Externally studentized
residual

Identification of abnormal runs External residual
r3.5 Sa

External
Residual43.5 Sa

If a special cause is identified for the outlier,
it may be rejected.

Leverage Points with large influences in the model fit Point leverageo2
ALb

Point leverage ¼1 Adding points or replicates to model

DFFITS(difference
in model fit)

Influence of each point in prediction values DFFITSo2/√P/Nc DFFITS42/√P/Nc Adding points or replicates to model

DFBETAS (difference
in betas)

Influence of each point in regression coefficients DFBETASo2/√N DFBETAS42/√N Adding points or replicates to model

Cook's distance (CD) Change in magnitude of regression if the case is
omitted

Point CDo2 ACDd Point CD42 ACDc If a special cause is identified for the outlier, it
may be rejected.

a Standard deviation.
b Average leverage.
c Where P is the number of model parameters and N is the number of experiments.
d Average Cook's distance.
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requirement for ANOVA validity) can be evaluated by the plot of
residual versus the ascending predicted response values. Two
additional plots are also important: (a) the residuals versus
experimental run order plot, which allows to detect uncontrolled
variables that may have influenced the response during the
experiment, and (b) the residuals versus levels of each factor plot,
which checks whether the variance not accounted for by the
model is different at diverse levels of a factor.

Furthermore, the evaluation of the externally studentized resi-
duals is useful to detect data points that are not well fitted by the
selected model (outliers). The leverage is a parameter indicating the
potential for a design point to influence the model fit. High leverage
points are not desirable because if they carry unexpected errors,
these errors would strongly influence the model. Other ways to
evaluate abnormal influential points are the DFFITS and DFBETAS
plots, which determine the difference in the model fit when a
response value is deleted. The DFFITS measures the change in
predicted values, while DFBETAS evaluates the difference in each
regression coefficient. Finally, Cook's distance, calculated as the
square of Euclidean distance between the least squares estimate
based on all n points of the vector and the estimate obtained by
deleting the ith point, is a measure of how much the regression
changes if this point is not taken into account. Outlier points with
high leverage and Cook's distance are recommended to be elimi-
nated of the model in order to obtain a better fit.

There are at least three ways to minimize the lack of normality
or residuals heterocedasticity [3]: (a) to use non-parametric
methods; (b) to use generalized linear model (GLM), a flexible
generalization of ordinary linear regression that allows for
response variables that have other than a normal distribution;
(c) to analyze a transformed response that meets the requirements
of normality. In this review the focus was set on option three,
owing both to the accessibility and to the practicability of it.

4.2.2. Response transformation
After a general evaluation of the proposed model, it may occur

that the implementation of data transformation allows a better fit
to the system. This condition is usually found in the following two
cases: (a) the range on the response is fairly large, or (b) model
assumptions, namely normality and homoscedasticity are not
fulfilled (see Table 3). In practice, some response variables follow
Poisson, binomial or Gamma distributions, in which the variance
of the response ðs2

yÞ is not constant, but is related in some way to
the mean ðμyÞ [23,26]. In such cases, an abnormal distribution of
the “horn-type” or “s-shaped” residues graph is produced.

Transformations apply a mathematical function to all the
response data, generating a new set of data y0 that meets the
assumptions that make the ANOVA valid. Then, a new model can
be built to better explain the data behavior.

A general and widely used method for transforming data in
linear models was developed by Box and Cox [27]. This family of
power transformation tools is extensively used to achieve a
normalizing transformation on a positive-valued response variable
given by

y'¼ ðyλ�1Þ
λ

; for λa0 ð4Þ

y'¼ log 10y or ln y ; for λ¼ 0 ð5Þ

where λ is a scalar parameter defining a particular transformation.
As it was mentioned before, the application of this methodol-

ogy involves that the data to be transformed are positive values.
Otherwise, an option to overcome this limitation is to add a
constant value (c) to all the response data, such that ðyþcÞ40 in
every point.

The appropriate choice of a response transformation relies on
the subject matter knowledge and/or statistical considerations
according to the type of distribution arising from residues. Gen-
erally, the best λ value is found at the minimum point of the curve
generated by the natural log of the sum of squares of the residuals,
i.e. the λ value that generates the set of data with lower residuals
dispersion (Fig. 4). If the 95% confidence interval (CI 95%) around
this λ includes 1 no specific transformation is necessary. This
procedure to choose λ allows for a continuous spectrum in the
interval [–3, þ3].

In the example given in Fig. 4, the response of a chromato-
graphic resolution was modeled as a function of four variables:
column oven temperature, buffer concentration, organic solvent
proportion, and pH of mobile phase. A quadratic model was firstly
adjusted with the original data set. During normality evaluation,
an “s-shaped” curve was obtained in the normal distribution plot of
the residuals, indicating lack of normality in data behavior.
Following Box and Cox methodology, several transformations were
evaluated to convert the original data in new data sets using Eqs.
(4) and (5) for λ values between –3 and 3. The natural logs of the
sum of squares of the residuals obtained with the transformed set
of data were plotted vs. the λ values. As it can be seen in Fig. 4, the
best λ value was –0.83, with a CI 95% ranging from –0.25 to –1.44.
In this particular case, the best choice for λ was a value of –1, i.e.,
an inverse transformation is recommended to be applied to the
analyzed response [28]. It is important to note that, adjusting a
model to a transformed response, predicted values for this
response should undergo a back transformation (using the math-
ematical inverse operation of the employed transformation) in
order to do a proper interpretation.

The transformation of the response is an important component
of any data analysis. However, the analyst is often reluctant to use
them. But if the curvature of RSM can be better accommodated by
an alternative approximating function that is simpler and easier to
be interpreted and analyzed, then the alternative function should
be used [3]. Interestingly, there is a reduced number of papers
reporting the use of response transformations when developing
analytical methods. An example can be found in Ref. [29].

4.2.3. Evaluation of individual coefficients in models
In each model, the significance of the terms should be eval-

uated by ANOVA, which performs a comparison of the variation in

Fig. 4. Box and Cox graphical study which allows to conclude if response
transformation is necessary.
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the response (due to changes in the combination of variable levels)
with the variation due to random errors. Generally, the terms that
are not significant in the model are eliminated to obtain the
simplest model that describes the system.

More than one possible strategy may be followed in this
evaluation: backward elimination, forward selection or step-wise
regression [3]. In the backward elimination strategy, a complete
model is initially built; then each term is evaluated by ANOVA. The
least significant term (the one with the highest partial probability
value) is removed from the model. This iteration stops when all
the remaining terms satisfy the specified significance (α value)
criterion.

When doing forward selection, all blocks and forced terms are
first fit to the data. Then, the remaining candidate terms are
considered, beginning with a simple regression model and using
the single term that has the highest correlation with the response.
Terms with the lowest partial probability value (p-value) are added
to the model. For designs with categorical factors, terms are added
hierarchically. When the p-value of the next term does not meet the
specified alpha value, it is not considered. This algorithm may not be
as robust as the others because some terms may never get the chance
to be included in the model. This will only cause concern if the data
exhibits a high degree of collinearity. However, the safest approach
may be the backward regression [3].

The step-wise regression is a combination of forward and
backward regressions. First, all blocks and forced terms are fitted
to the data. Then, a simple regression model, using the single term
with the highest correlation with the response is used. After that,
terms are added, eliminated or exchanged and the procedure is
stopped when there is no further improvement.

An easier way to look at the coefficients and their relative
magnitude is the bar plot reported by Leardi [19]. In this tutorial, a
graphical representation of the coefficients of the models of two
responses evaluated trough a CCD was made with bars with
brackets, corresponding to the confidence intervals. A simple
visual inspection of the graphic gives a global idea of the relative
significance of each model term.

The lack of fit of the resulting model, including significant
terms and those left to maintain the hierarchy, are again evaluated
by ANOVA. Finally, the adjusted and evaluated model can be
linear, linear with interaction, quadratic or cubic. Interestingly,
it can be seen that in most of the consulted scientific literature
(see Section 6), authors do not inform about the kind of model for
each response being optimized.

4.2.4. Artificial neural networks
The ANN methodology is an information-processing chemo-

metric technique especially created to model non-linear informa-
tion, which simulates some properties of the human brain. The so-
called multilayer feed-forward networks [30,31] or multi-layer
perceptron (MLP) networks are often used for prediction as well as
for classification. The architecture mostly used consists of three
layers of neurons or nodes, which are the basic computing units:
the input layer, with a number active neurons equal to the number
of factors being investigated (predictor variables in regression),
one hidden layer with a variable number of active neurons (which
should be optimized), and an output layer which has a unit for
each response. The neurons are connected in a hierarchical
manner, i.e., the outputs of one layer of nodes are used as inputs
for the next layer and so on. In the hidden layer, the sigmoid
function f ðxÞ ¼ 1=ð1þe� xÞ is commonly used, and the output of the
hidden neuron j, Oj, is calculated as

Oj ¼ f ∑
m

i ¼ 1
ðsiwijþwbjÞ

" #
ð6Þ

In Eq. (6), si is the input from neuron i in the layer above, to
neuron j in the hidden layer, wij are the connection weights
between neurons i and j, wbj is the bias to neuron j and m is the
total number of neurons in the layer above.

Linear functions are generally used both in the input and
output layers. The number of hidden layers and neurons in each
hidden layer must be selected to achieve a satisfactory fitting
ability of the network, associated to a satisfactory predictive ability
[32,33].

It is important to stress that ANN trained with this rule have a
remarkable advantage, as there is no need to know the exact form
of the analytical function on which the model should be built.
Furthermore, neither the functional type nor the number of model
parameters need to be given. This is the main difference between
modeling by LS regression or ANN.

As an example, Fig. 5 shows the scheme corresponding to a
MLP built for modeling data provided by a central composite
design for three factors. A vector datum corresponding to each
factor is introduced in a neuron of the input layer. In the example,
four hidden neurons are necessary to better modeling data. One
neuron in the output layer provides the predicted responses
corresponding to each experimental combination of factors. After
that, the optimal location is searched (see below).

An additional sort of ANN, based on the use of radial basis
functions (RBF) has been recently introduced for nonlinear multi-
variate function estimation and regression tasks [34]. RBF net-
works have a single hidden layer of neurons incorporating
Gaussian transfer functions, and a linearly activated output layer.
In comparison with MLP networks, RBF offers some advantages

Fig. 5. Scheme corresponding to a MLP built for modeling data provided by a
central composite design for three factors.
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such as robustness towards noisy data as well as a faster training
phase [35].

In the context of regression analysis, recent RBF publications
which describe applications to near-infrared analysis of organic
matter in soils [36], glucose in blood [37], and water content in fish
products [38] can be cited. In the field of optimization, RBF was
used for the prediction of optimal culture conditions for maximum
hairy root biomass yield [39].

Radial basis function networks also consist of three layers. The
input layer serves to distribute the input variables to the hidden
layer (as mentioned for MLP). Each of the M neurons of the hidden
layer uses a basis Gaussian function as transfer. In order to
implement these networks, it is required to find suitable para-
meters for the Gaussian functions of the hidden layer [40]. They
are the centers (contained in the F�1 vector cm) and the widths s,
which are usually considered to be equal for all functions. The
output from the mth. hidden neuron, for a given input object si, is
therefore expressed as

outm ¼ exp � 1
2s2jjsi�cmjj2

��
ð7Þ

where ||si�cm|| is the Euclidean distance between si and cm. The
input value to the output node is the weighted sum of all the
outputs of the hidden nodes, with the response of the output node
linearly related to its input. Hence, the RBF network output (outi)
for an input object si is given by

outi ¼w0þ ∑
M

m ¼ 1
wmexp � 1

2s2jjsi�cmjj2
��

ð8Þ

where w0 is the bias and wm is the weight assigned to the mth.
hidden output. These weights are adjusted to minimize the mean
square error of the net output. Therefore, two sets of parameters
(the centers and widths) in the hidden layer, and a set of weights
in the output layer are adjusted. RBF has a guaranteed learning
procedure for convergence: given the centers of the M basis
functions and a set of I training objects with known factor values
(si) and target response (ri), the minimum squared error in the
prediction of r is attained when the weights are given by

w¼ ðHTHÞ–1HTr ð9Þ
where w is a vector (M�1) collecting the weights, r (I�1) is the
vector of target response values, and H (I�M) is the so-called
design matrix, whose elements are calculated as

Hði;mÞ ¼ exp � 1
2s2jjsi�cmjj2

� �
ð10Þ

4.2.5. Optimal location
A suitable way to find the optimal location is through the

graphical representation of the model. Two types of graphs may
result helpful: (a) the response surface in the three dimensional
space and (b) the graph of contours that is the projection of the
surface in a plane, represented as lines of constant response. Each
contour corresponds to a specific height of the surface. In these
graphics the response is represented as a function of two factors.
According to the established optimization criterion, the optimal
value sought may correspond to a maximum, a minimum or a
specific value, that can be found by simple visual inspection of the
graph. When more than two factors are studied, those who are not
plotted must be set at a constant value, thus a limited part of the
experimental domain is shown and the optimum is not necessarily
seen in the graph. For this reason, the value of the fixed variable
must be selected very carefully. The overlaying of contour plots
constructed with par combination of three factors allows to search
visually for the best compromise region satisfying response
requirements. However, if more than three factors are being

analyzed, the superposition of contour plots becomes difficult.
Therefore, sometimes a more formal analytical approach to the
second-order surface is necessary when it is generated in k
dimensions. One possible approach is to differentiate the adjusted
polynomial with respect to each of the factors, and then allowing
the derivative to be set to zero. In this way, the stationary point of
the system can be found, which is usually the “optimal candidate”
corresponding to a point with a maximum or minimum response
in the hyper-surface (k-dimensional), or a saddle point. If the
stationary point of the system does not correspond to the wanted
optimum, “ridge analysis”, a procedure that involves a constrained
optimization algorithm is an excellent alternative to find the best
operating conditions inside the experimental region [3].Alterna-
tively, if the problem presents low-dimensionality (up to 4 para-
meters) a grid search would be a feasible manner to find the
maxima or minimum.

It should be remarked that a confidence region for the
stationary point should be computed. This region is useful because
it can provide an idea about the quality of estimation of the
stationary point. The size and the direction allows to consider
levels of factors which produce a response significantly equal to
that produced by the stationary point, and this can provide the
advantage to change the level of factors without affecting the
quality of the response [41].

5. Multiple response optimization

When the optimization procedure involves more than one
response, it is not possible to optimize each one in a separate
way, because a number of solutions equal to the variables under
study would be gathered. In the optimization of a process or an
analytical method, the overall solution must be included in an
optimal region, leading to a certain degree of compliance with the
proposed criteria for each variable of the system; namely, a
compromise solution must be found.

5.1. Graphical optimization

Overlaying the contour plots of each individual response, in the
same way as it was discussed for model optimal location, allows to
estimate the joint solution provided the number of responses and
factors is not too large [3]. As it can be inferred, the graphical
representation is only useful when two factors are considered in
the optimization of two responses. When the number of responses
is equal to or greater than three, the methodology of the contour
plot is difficult to interpret and it cannot be usually applied. If the
optimal values for each response are localized in different regions,
it will be awkward to find graphically the conditions that simulta-
neously satisfy all responses. The level of difficulty increases as
these optimal regions become more distant from each other and
do not intersect themselves [3,4]. An alternative is to transform a
multiple response problem in a single response one.

5.2. Desirability function

In 1980, Derringer and Suich found one of the solutions to
optimize multiple responses by developing the Desirability func-
tion, which has been widely used since then in industry [17]. This
function is based on the idea that the quality of a product or
process that has many features is completely unacceptable if one
of them is outside of a “desirable” limit. Its aim is to find operating
conditions that ensure compliance with the criteria of all the
involved responses and, at the same time, to provide the best
value of compromise in the desirable joint response [3]. This is
achieved by converting the multiple responses into a single one,
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combining the individual responses into a composite function
followed by its optimization [17].

Derringer's desirability function allows the analyst to find the
experimental conditions (factor levels) to reach, simultaneously,
the optimal value for all the evaluated variables, including the
researcher's priorities during the optimization procedure. In a first
step, an individual desirability function di(ŷi) for each response
ŷi(k) must be created using the fitted models and establishing the
optimization criteria. Desirability always takes values between
0 and 1, where di(ŷi)¼0 for a undesirable response, and di(ŷi)¼1
represents a completely desirable value, i.e., and ideal response.
Intermediate values of di(ŷi) indicate more or less desirable
responses.

Different functions may be built, depending on the optimiza-
tion criteria adopted, within an acceptable range of response
values given by (Ui–Li), where Ui is the upper acceptable value
for the response and Li is the lower. Thus, if the response has to be
maximized, di(ŷi) is described by the following equation:

diðŷiðxÞÞ ¼
0 if ŷiðxÞoLi
ŷiðxÞ�Li
Ui � Li

� �s
if Lir ŷiðxÞrUi

1 if ŷiðxÞ4Ui

2
664

3
775 ð11Þ

where s is a power value named “weight”, set by the analyst to
determine how important it is for ŷi to be close to the maximum.

The equation for di(ŷi), when it has to be minimized, is

diðŷiðxÞÞ ¼
1 if ŷiðxÞoLi
Ui � ŷiðxÞ
Ui �Li

� �t
if Lir ŷiðxÞrUi

0 if ŷiðxÞ4Ui

2
6664

3
7775 ð12Þ

where t is the weight to determine how important is it for ŷi to be
close to the minimum.

Finally, when a target value Ti is the most desirable response,
the function is given by:

diðŷiðxÞÞ ¼

0 if ŷiðxÞoLi
ŷiðxÞ�Li
Ti � Li

� �s
if Lio ŷiðxÞoTi

1 ŷiðxÞ ¼ Ti

ŷiðxÞ�Ui
Ti �Ui

� �t
if Tio ŷiðxÞoUi

0 if ŷiðxÞ4Ui

2
6666666664

3
7777777775

ð13Þ

Interestingly, factor levels may also be included in the optimi-
zation procedure, in order to prioritize the use of certain suitable
conditions within the experimental region.

Fig. 6 shows a graphical representation of the desirability
functions for the different optimization criteria and how they are
modified by s or t. Note that low values for the weight parameters
indicate that the response does not require to be strictly near the
target value, reaching satisfactory desirability levels for a wide
range of responses. In contrast, a choice of large s or t implies that
the desirability is very low unless the response gets very close to
the target.

Once the n variables (factor and responses levels) are trans-
formed in desirability functions, they are combined in a unique
function [17] named Global Desirability (D) to find out the best
joint responses using the following equation:

D¼ ðdr11 x dr22 x::::::x drnn Þ
1

∑ri ¼ ∏
n

i ¼ 1
drii

 ! 1
∑ri

ð14Þ

where ri is the importance of each variable relative to the others.
In the Design Expert software [42], the importance, established by
the analyst, may vary from 1 for the least important variable to
5 for the most important one.

When D reaches a value different from zero, all the variables
which are being simultaneously optimized can be considered to
have a desirable value. On the other hand, if one of the responses
is completely undesirable, di(ŷi)¼0, D will be zero. The optimiza-
tion procedure implies to maximize D for which various aggrega-
tion schemes may be employed.

Several optimization procedures other than Derringer function
and maximization algorithms have been recently analyzed, dis-
cussed and evaluated and new alternative methodologies have been
proposed [43–46]. Whatever the case, it should be kept in mind
that the goal of an optimization procedure is to find a good set of
conditions that will meet all the goals, but not to get to a D value
equal to 1. This value is completely dependent on how closely the

Fig. 6. Graphical representation of the desirability functions for the different
optimization criterias.
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Li and Ui limits are set relative to the actual optimum and on the
different weights or priorities assigned to each response.

Global desirability can also be graphically represented for the
experimental space, calculating several values for D using di(ŷi) for
all the responses for a high number of combination of factor levels
(a grid). The function usually finds more than one combination of
factor levels where the responses are acceptable and represented
as a flattened top in the surface of D plot. In these cases, it can be
stated that the optimization has generated a robust solution [47].

The final step in multiple response optimization is to predict
the values that the different responses can take at the optimal
factors combinations using the fitted models. Then, analytical runs
should be performed to verify the predictions.

To show the potentiality of the desirability function, a real example
carried out in our research group will be considered as follows. It
corresponds to the optimization of the pre-concentration and clean-up
step by solid-phase micro-extraction (SPME) followed by liquid
chromatography with diode array detection analysis in the develop-
ment of an analytical method for the simultaneous determination of
seven non-steroidal anti-inflammatory drugs (piroxicam, sulindac,
ketoprofen, naproxen, diflunisal, indomethacin and sodium diclofenac)
and the anticonvulsant carbamazepine [48]. In order to find the
operational conditions to improve the efficiency of the procedure, a
central composite design consisting in 20 experiments was built. Peak
areas for all the analytes (as indicators of sensitivity) and analysis time
were fitted to polynomial models and validated by the ANOVA. Solving
this system of multiple responses by overlaying the contour plots of
every combination of factors for each of the nine responses is a very
difficult task and, therefore, the use of a simultaneous optimization
method was required. For this reason, all the nine responses were
simultaneously optimized using the desirability function.

The goal of the optimization task was to minimize the analysis
time and to maximize peak areas, between the lower and upper
experimental limits, giving more importance to the analytes with
smaller areas (carbamazepine and piroxicam), and in decreasing
order of importance to the others.

The optimization procedure was carried out and the global
desirability function was plotted reaching a level of 0.941for the
criteria. (for more details and graphical representation see Ref.
[48]). The contour plots were obtained in this work for a given pair
of factors, while maintaining the other fixed at its optimal global
function (D) value. Besides that these representations were only
partial because one of the three factors should remain constant,
they allowed us to conclude about the robustness, i.e. the region
corresponding to optimal solutions is not very sensitive to small
accidental changes in the analyzed factors [41].

It should be remarked that the success of the desirability
function approach depends completely on the quality of the
models employed in the optimization process. In order to apply
this method properly, only statistically validated models should be
used to build the partial desirability functions. In this way, the
probability of the lack of fit test in these models should be larger
than 0.05. Other interesting aspects should be taken into account:
(a) the desirability approach consists in a one-dimensional opti-
mization which does not mean that it is always easy to look for the
maxima of D, and (b) D is not differentiable, so that alternative
algorithms have to be used. In this context, the critical values for
acceptability and target, as well as the shape of the function and
the relative weight of the different responses, are all (more or less)
arbitrarily defined “a priori” by the user. It should be considered
that just changing somewhat some of these parameters will lead
to totally different landscapes of D.

On the other hand, D is obtained by the product of individual
desirabilities, each of which has its own error. Thus, the con-
fidence interval of D can therefore be very high. Consequently,
the setting selected as the best (simply because its numerical

value of D is the largest) cannot be significantly better than other
regions that would be neglected simply because they have lower
values of D.

6. Applications

DOE has been widely applied to a variety of analytical techni-
ques. Most of the applications were aimed at solving drawbacks in
separation techniques. Recently, in an excellent review presented
by Dejaegher and Vander Heyden [7], a complete list of reviews
and works, which focuses on the kind of designs used for different
applications in a wide variety of analytical techniques, has been
presented. Herein, the focus will be set on using multiple response
optimization, especially those applications for solving the problem
of a large amount of responses being optimized.

6.1. Extraction procedures

The most recent applications on extraction procedures include
novel extraction techniques like solid phase micro-extraction
(SPME), hollow fiber solid phase micro-extraction (HF-SPME),
subcritical fluid extraction (SCFE) and microwave-assisted extrac-
tion (MAE). In many cases, such techniques have been combined
with experimental design strategies with the aim of increasing the
extraction efficiency.

Lu et al. have recently developed a SCFE of carotenoids and
chlorophyll from Laminaria japonica Aresch using ethanol-
modified subcritical 1,1,1,2-tetrafluoroethane. RSM combined with
a Box–Behnken design was applied in this work to evaluate the
significance of three independent variables (pressure, temperature
and amount of co-solvent) on the yields of carotenoids and
chlorophyll by using the desirability function [49].

Another method based on MAE was proposed by Fang et al. for
simultaneous extraction of hydrosoluble phenolic acids and lipo-
soluble tanshinones in Salviae Miltiorrhizae radix (danshen),
which are widely used in traditional Chinese medicine. The key
parameters considered for the MAE included solvent type, tem-
perature, microwave power, solvent to material ratio and extrac-
tion time. These factors were evaluated by the univariate approach
in a first instance. 80% methanol in water was selected as the
extraction solvent and proper levels were established for tem-
perature and microwave power. Then, a multivariate optimiza-
tion procedure was applied in order to find out the optimal
experimental conditions giving the maximum extraction yield of
nine danshen components as a function of extraction time and
solvent to material ratio. A central composite design was used,
consisting of 13 experiments which corresponded to combinations
of the two selected independent variables. Quadratic models were
fitted for the nine extraction yields and the responses surfaces
were obtained and evaluated. Fig. 7(A–C) shows the interaction of
solvent ratio and extraction time in the yield of three of the target
tanshinones. Later, the desirability function approach of Derringer
was used to optimize all the nine extraction yields simultaneously.
A value of five was the importance assigned to the main active
components of Danshen, whereas for the least important compo-
nent the importance of partial desirability functions was equal to 3.
Simultaneous extraction of the hydrosoluble and liposoluble com-
ponents was demonstrated to be feasible by the optimized MAE
method [50].

In another application, which deserves to be mentioned, carbon
coated Fe3O4 magnetic nanoparticles were used as an adsorbent
for magnetic solid phase extraction (MSPE) of trace amounts of
organophosphorus pesticides from environmental water samples.
Their determination was carried out later, using high performance
liquid chromatography with ultraviolet detection. Optimization
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was conducted using a central composite design. Four factors
including the sample solution pH (A), ionic strength (B), amount of
the adsorbent (C) and equilibrium time (D) were considered. The
experimental range was coded in low (–1), central (0), and high
(þ1) levels of the factors with the location of the star points in
(72), as shown in Table 4. These designs involved 29 experiments
with five replicates at the center point. The criteria selected for the
optimization of all the factors and responses studied (peaks areas
of the analyte) through the desirability function are presented in
Table 5. As it can be seen, the authors looked at this opportunity,
not only to maximize the signal of the compounds of interest but
also the reduction of the equilibrium time (a factor of the design).
A weight of 1 was chosen for all individual desirabilities, while the
importance was equal for all responses when constructing the
global function. The experimental conditions providing the highest
extraction efficiency were found in this way to be in correspon-
dence with a solution pH of 9.16, 97.4 mg of adsorbent, equilibrium
time 0 min and 10 mmol L–1of NaCl added to the samples. Under
optimal conditions, the proposed method was evaluated, and
successfully applied to the analysis of organophosphorus pesti-
cides in water samples [51].

Ghafoor et al. developed a method based on SCFE for valuable
compounds from grape peel. The process was carried out accord-
ing to an orthogonal array design consisting of 16 experiments,
and the independent variables selected were temperature, pres-
sure and modifier concentration. The experimental responses
were extract yields, total phenols, antioxidant activities and total
anthocyanins of grape skinextracts, which were fit to a second-
order polynomial equation. The prediction of one set of optimal
conditions for four response variables was also done by using the
desirability function approach [52].

Es'haghi et al. optimized a method for pre-concentration and
determination of benzene, toluene, ethylbenzene, and xylene in

Table 4
Factors and value levels used in the central composite design for the optimization
made of the MSPE procedure for extracting trace amounts of organophosphourus
pesticides from environmental water. Reprinted from [51], copyright 2012, with
permission of Elsevier.

Factors Level

α (–2) Low (–1) Center (0) High (þ1) α (þ2)

A:pH 4 6 8 10 12
B: Ionic strength
(mmol L–1; NaCl)

0 100 200 300 400

C: Amount of the adsorbent
(mg Fe3O4/C)

5.0 28.8 52.5 76.3 100.0

D: Equilibrium time (min) 0 15 30 45 60

Table 5
Constraints of factors and responses for optimization. Reprinted from [51], copy-
right 2012, with permission of Elsevier.

Name Goal Lower limit Upper limit Weight Importance

pH Is in range 4 12 1 –

Na CL Is in range 0 400 1 –

mg Fe3O4/C Is in range 5 100 1 –

Eq. time Minimize 0 60 1 –

RMala Maximize 12,000 133,308 1 5
RDiaz Maximize 10,004 73,964 1 5
RPhos Maximize 32,498 470,478 1 5
RChlor Maximize 86,136 429,764 1 5

Fig. 7. Response surface plots for extraction yield as a function of solvent ratio and
extraction time of: (A) Cryptotanshinone(CT), (B) Tanshinone I(TI) and (C) Tan-
shinone IIA (TIIA). Reprinted from [50], copyright 2011, with permission of Elsevier.
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environmental waste water and human hair samples by SPME. In
order to obtain high enrichment and extraction efficiency of the
four analytes, an orthogonal array experimental design was
applied. The matrix was built considering four factors selected
according to the researcher's knowledge: stirring speed, volume of
adsorption organic solvent, extraction and desorption time of the
sample solution, which were evaluated at four levels. The effect of
each factor was estimated using individual contributions as
response functions in the screening process. Therefore, each
response was plotted as a function of the factors and the optimum
was selected graphically. Then, ANOVA was employed for estimat-
ing the main significant factors and their percentage contributions
in the extraction. The final optimum conditions were calculated by
OVAT methodology [53].

Finally, Prakash et al. have recently proposed a method for the
extraction of betalain pigments and color from prickly pear fruits.
The individual and interactive effect of process variables (tem-
perature, time, mass and pH) on the extracted betalain concentra-
tion and color of the extract was studied using Box-Behnken
response surface design. The experimental data, obtained from
29 experiments, were analyzed by ANOVA and the second-order
polynomial models were developed using multiple regression
analysis. An optimization study using Derringer's desirability
function methodology was performed, the goal being to maximize
the extraction of betalain and the color of the extract. Under the
optimized conditions, which were obtained with a total desirabil-
ity value of 0.936, the experimental values of pigment and color
agreed closely with the predicted yield [54].

6.2. Analytical separations

In the development of analytical methods based on techniques
such as high performance liquid chromatography (HPLC), gas
chromatography (GC) and capillary electrophoresis (CE), the ana-
lyst usually has to appeal to multiple response optimization. This
is because several responses are frequently of interest, considering
the analytical characteristics of the method (separation between
analyte peaks, analysis time and peak features such as width,
symmetry and theoretical plates, among others). Nevertheless, a
special comment should be made for separation problems in
which maximizing the minimal resolution can sometimes be
inconvenient [55]. This fact may be due to two reasons that will
be considered:

(1) Normally when there are two peaks (A and B), eluting once as
AB and once as BA, when the separation is the same, resolu-
tion (Rs) values are the same, e.g. 2. However, for modeling Rs
it is detrimental because two different situations lead to the
same response. In fact, in a proper modeling context, one
situation should have been called Rs¼2 and the other Rs¼–2.
In practice, this has not been done, but researchers prefer
computing Rs among the most proximal peaks occurring for
each one in each optimization chromatogram (without the
identification of the compound) [28].

(2) In optimization, one creates situations and evaluates condi-
tions where selectivity changes occur. The optimum separation
is at the conditions where the minimal resolution becomes
maximal, i.e. where the worst separated peak pair is separated
best. However, at different experimental conditions different
peak pairs can be responsible for the critical resolution. Thus,
when 5 peaks need to be separated one should model
4þ3þ2þ1¼10 resolutions (between all possible pairs), while
at each condition only four are relevant. Therefore alterna-
tively, the retention times (tr) of the 5 substances are modeled
(in isocratic optimizations also the peak widths (w)). In order
to find the optimum, a grid is created and at each grid point tr

and w of a substance predicted. Sorting the different tr at one
set of conditions allows to calculate the Rs between the
relevant peak pairs and to select the minimal one. The set of
condition where the latter is maximal is then the optimum.

Recently, Bruns et al. developed six procedures to separate
different sets of carbohydrates present in food samples by micellar
electrokinetic chromatography. The effects of pH, electrolyte and
surfactant concentrations on the separation of the compounds
were investigated using a central composite design requiring 17
experiments, while several responses were simultaneously stu-
died: resolutions between adjacent peaks, run time and analytical
signal to noise ratio. Linear and quadratic models were used to fit
the responses. Then, the Derringer and Suich technique was used,
stipulating desirability criteria for each resolution. The conditions
predicted by the model were confirmed experimentally within the
sets of analytical standards. In some cases, more than one
satisfactory set of conditions were found. The optimal conditions
were applied to real samples in order to evaluate the effect of the
matrices. The investigated procedure allowed the separation of the
strategic sets of carbohydrates present in each sample [56].

The same authors presented another application of simulta-
neous optimization of a method to quantify thirteen phenolic
compounds in extra-virgin olive oil. Using a central composite
design, they investigated changes in boric acid concentration, pH
and voltage. Five resolutions between the nearest electrophoretic
peaks and analysis time were adjusted to linear and quadratic
models and validated by means of ANOVA at the 95% confidence
level. The optimum conditions to separate all the 13 peaks were
determined by examining response contour graphs (see an exam-
ple in Fig. 8) and using the Derringer and Suich multi-criteria
response technique. Desirability values were established for each
individual response and they were combined into their recom-
mended global desirability function. The individual desirabilities
were defined to maximize the resolutions while minimizing the
runtime. The global desirability function value was around 0.2,
which is probably due to the very restrictive criteria employed in
this application. However all the peaks were neatly separated in a
runtime below fourteen minutes as it was predicted by the model.
Fig. 9 contains the obtained electropherogram [57].

Guillén-Casla et al. proposed a method for the determination of
serotonin and its precursors in chocolate samples by capillary
liquid chromatography–mass spectrometry (MS). The optimization
study of the chromatographic conditions was done by using an
experimental design involving the following factors: pH and buffer
concentration of the mobile phase, injection volume and focusing

Fig. 8. Contour line graph for the boric acid concentration and voltage showing the
experimental region that results in acceptable electropherograms. The pH was held
constant at 10.2. The central point shows the optimum conditions. Experimental
values for design points are in parenthesis. Reprinted from [57], copyright 2010,
with permission of Elsevier.
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conditions, while both peak area and peak width were selected as
experimental responses to evaluate sensitivity in MS detection. A
first-order polynomial equation was fit, obtaining R2 higher than
0.781 and good standard estimation errors. The optimization
criterion involved maximizing peak area while minimizing peak
width. The experimental responses obtained under the optimum
conditions (D¼0.7) were statistically compared to those predicted
by the model [58].

De Zan et.al optimized an ion-pairing HPLC method for the
simultaneous determination of the two nicarbazin components in
bulk materials and feed additives. Four variables, including mobile
phase composition and oven temperature were analyzed through
a central composite design exploring their contribution to the
analytes separation. The experiments were performed in three
blocks, and six replicates were made to provide a measure of pure
error and to stabilize the variance of the predicted response in the
design region. Then, five responses, peak resolutions, 2-hydroxy-
4,6-dimethylpyrimidine (HDP) capacity factor, HDP tailing and
analysis time, were modeled using second-order polynomial
functions. In each model, the terms were evaluated by ANOVA
and the backward regression procedure was applied to eliminate
the insignificant ones (α¼0.10). Thus, simplified models, including
only significant terms and those necessary to maintain the
hierarchy were obtained and evaluated by ANOVA for model
significance and lack of fit. Finally, to find out the experimental
conditions to reach simultaneously the optimal value for all the
evaluated variables, the Derringer desirability function was used.
Three responses were maximized (HDP capacity factor and two
resolutions while analysis time was minimized, and HDP peak
tailing was adjusted to a target value). Interestingly, apart from
optimizing the responses, the authors also attempted to minimize
the concentration of salts in the mobile phase to reduce costs and
extend the column lifetime. In addition, a weight or emphasis was
given to each goal: the highest importance was assigned to the
HDP capacity factor and peak tailing (r¼5), whereas a lower
importance was given to retention time (r¼1); the importance
of the other variables was kept in an intermediate value. The
suggested optimal conditions were then experimentally corrobo-
rated [29].

In a very recently reported work, Ferey et al. developed a CE
method with laser-induced fluorescence detection for the fast
simultaneous separation of 8 heavy polycyclic aromatic hydro-
carbons (PAHs) among food and environmental priority pollutants.
The first step involved the selection of the most important factors
influencing PAHs electrophoretic behavior. Then, a response sur-
face strategy using a central composite design was carried out to
model the effects of the selected factors on the normalized
migration times. Twenty experimental conditions were finally

evaluated. An optimization study using Derringer's desirability
function methodology was performed to optimize four responses:
the analysis time and the resolutions between 3 critical pairs of
PAHs. The goal was to minimize the analysis time, maintaining the
resolution higher than 2.5. A weight of 1 was given to all individual
desirabilities, except for the analysis time for which a weight of 20
was attributed. From the model, predicted optimum conditions
were experimentally validated and full resolution of all 8 PAHs was
achieved in less than 7 min [59].

The desirability function was also applied to a microemulsion
liquid chromatographic method development for the chromato-
graphic separation of perindopril tert-butylamine and its four
impurities. A central composite fractional factorial design was
applied for a response surface study of five factors on three
responses [60].

In another interesting application, a multiple response optimi-
zation strategy for the separation of acetylsalicylic acid, its major
impurity salicylic acid and ascorbic acid in pharmaceutical for-
mulations by hydrophilic interaction chromatography was devel-
oped using a Box–Behnken design. The effects of four independent
variables was studied simultaneously on two responses (resolu-
tion and analysis time). The methodology also captured the
interaction between variables which enabled the exploration of
the retention mechanism involved. From this study, it was inferred
that the retention is governed by a compromise between hydro-
philic partitioning and ionic interaction [61].

Multiple response optimization using the Derringer's desirabil-
ity function was also used for the development of a reversed phase
HPLC method for the simultaneous determination of lamivudine,
tenofovir and efavirenz in commercial pharmaceutical prepara-
tions. Twenty experiments, taking the capacity factor of the first
peak, resolution between the second and third peaks and the
retention time of the third peak as the responses with three
important variables as organic phase composition, buffer molarity,
and flow rate, were used to design mathematical models. The
experimental responses were fitted into a second order polyno-
mial and the three responses were simultaneously optimized to
predict the optimum conditions for the effective separation of the
studied compounds [62].

Hadjmohammadi and Nazarihave recently reported the separa-
tion of five flavonoids with micellar liquid chromatography using
experimental design and Derringer’s desirability function. They
study the effect of four factors in two responses: mobile phase and
flow rate. The experiments were performed according to a
face-centered cube half fractional central composite design. The
optimum mobile phase composition for separation of the flavo-
noids using a C18 column was [SDS]¼0.040 mol L–1; 11.2% v/v
butanol, 1.4% v/v acetonitrile with flow rate of 1.1 mL min–1. The
efficiency of prediction of the polynomial model was confirmed by
performing the experiment under the predicted optimal condi-
tions [63].

The development of a reversed-phase HPLC method for the
simultaneous determination of pantoprazole, rabeprazole and
lansoprazole with domperidone in human plasma samples was
carried out by Sree Janardhanan et al. by multiple response
optimization employing the Derringer's desirability function. The
influence of the independent variables (% acetonitrile, buffer
concentration and flow rate) on the output responses: capacity
factor of the first peak, resolutions between critical peaks, reten-
tion time and a variable defined by the authors as “the chromato-
graphy optimization function” (COF) were evaluated. The
coefficients of determination R2 were more than 0.92 for all the
models. Optimum conditions chosen for assay were acetonitrile,
methanol and 18.65 mM K2HPO4 (pH 7.070.5) solution
(31.41:20:48.59 v/v/v) in a flow rate of 1.10 mL min–1. Total
chromatographic analysis time per sample was approximately

Fig. 9. Eletropherogram for the 13 phenolic compounds after overall optimization.
Standard mixture containing 12.9 mg L1 of each compound.For peak identification
refer to original article. Reprinted from [57], copyright 2010, with permission of
Elsevier.
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9 min. The authors found the method to be simple, sensitive and
applicable in bioavailability studies [64].

Different interpretations of the desirability function were made
for simultaneous optimization of resolution and analysis time of
seven flavonoids in reverse phase liquid chromatography [65]. To
judge the extremely different quality aspects of a chromatogram
and to find a compromise between conflicting goals such as
maximizing the separation while minimizing the analysis time,
the authors developed a combined criterion called a chromato-
graphic response function (CRF) which consists of factors related
to the time and describing the separation quality. For more details
see Ref. [65].

Other applications can be cited as the optimization of a strategy
for preconcentration of antibiotic residues in milk and their
quantitation by capillary electrophoresis [66] and the develop-
ment of an HPLC-electrochemical detection method for the deter-
mination of captopril in which the optimal conditions were found
by superimposition of contour plots [67].

6.3. Other applications

In addition, and even though the field of production processes
does not fit within the aim of this review, several recent applica-
tions of multiple response optimization deserve to be cited. They
are summarized in Table 6, Refs. [68–72].

7. Conclusions

Experimental design and optimization play an important role
in the procedure carried out when a new analytical method is
developed and validated. This is the reason why analytical meth-
ods must meet complex quality requirements, the process gen-
erally being affected by a large number of variables (or factors).

The application of RSM is a relevant issue in the field of
analytical methods development, and regrettably, nowadays few
reports presenting new methods show the application of a multi-
variate strategy. When RSM is performed, important issues to be
considered are selection of the most convenient experimental
design, modeling of the experimental data by using preferentially
least squares fitting, and location of the optima.

As a result of the increasing complexity on both modern
instrumentation and analytical problems, it is common that
several responses should be simultaneously optimized, especially
in the field of analytical separations and sample pre-treatments. In
this scenario, the desirability function of Derringer and Suich has
been the option of many researchers, playing an important role in
the world of experimental design and optimization, as it can be
ascribed from the high number of papers published concerning
this topic in recent years.
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